МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Пермского края Администрация Бардымского муниципального округа МБОУ "Бардымская СОШ №2"

РАССМОТРЕНО

Руководитель ШМО ЕМЦ

Тимганов И.Г.

от «27» августа 2025 г.

СОГЛАСОВАНО

Зам. директора

Mar

Кантуганова Г.Ф.

от 28 августа 2025 г.

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности

Решение сложных задач по генетике

учебного предмета «Биология. Профильный уровень» для обучающихся 10 –11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа разработана в соответствии с требованиями Федерального государственного образовательного стандарта сред- него общего образования (далее — ФГОС СОО), ориентирована на обеспечение индивидуальных потребностей обучающихся и направлена на достижение планируемых результатов освоения Федеральной основной образовательной программы среднего общего образования с учётом выбора участниками образова- тельных отношений курсов внеурочной деятельности. Это позволяет обеспечить единство обязательных требований ФГОС СОО во всём пространстве школьного образования: не только на уроке, но и за его пределами.

Темы «Молекулярная биология» и «Генетика» - наиболее интересные и сложные темы в общей биологии, но часов на отработку умения решать задачи в школьной программе не предусмотрено, поэтому без дополнительных занятий научить школьников решать их сложно, а это предусмотрено стандартом биологического образования и входит в состав КИМов ЕГЭ.

Решение задач по биологии дает возможность лучше познать фундаментальные общебиологические понятия, отражающие строение и функционирование биологических систем на всех уровнях организации жизни. Решение задач по биологии позволяет также углубить и закрепить знания по данным разделам общей биологии.

Внеурочный курс «Решение сложных задач генетике» не только расширяет и систематизирует знания учащихся, но и рассматривает основные общебиологические понятия и закономерности, а также носит практико-ориентированный характер.

Изучение материала данного курса способствует подготовке к единому государственному экзамену.

ЦЕЛИ ИЗУЧЕНИЯ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Цель курса углубление, расширение и систематизация знаний по молекулярной биологии и генетике, формирования у учащихся умений решать задачи по молекулярной биологии и генетике разной степени сложности

Задачи курса

- систематизировать и расширить знания о генетических закономерностях, открытиях в области молекулярной биологии;
- научить применять изученные закономерности при решении задач;
- показать практическую значимость генетики и молекулярной биологии для биотехнологии, селекции, медицины, охраны здоровья;
- содействовать развитию творческого биологического мышления, навыков самостоятельной работы и коммуникативных умений при решении биологических задач;
 - •подготовить учащихся к сдаче экзаменов в формате ЕГЭ.

МЕСТО КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «Решение сложных задач по генетике» В УЧЕБНОМ ПЛАНЕ

Программа курса рассчитана на 34 часа на уровне среднего общего образования, в рамках которых предусмотрены такие формы работы, как лекции, беседы, практические занятия, решение задач.

Основная форма организации образовательного процесса — урок (комплексного применения знаний и умений, комбинированный). Технологии, используемые при реализации данной программы: технология критического мышления, технология организации самостоятельной деятельности

Контроль, за освоением программы осуществляется с использованием разнообразных форм (фронтальный, групповой, индивидуальный) и видов (тестирование с различными видами заданий, выполнение лабораторных работ, составление схем, таблиц, развернутых ответов на вопрос).

Для получения учащимися качественного образования предусмотрены требования к материальному оснащению образовательного Комплексное обучения использование средств учителем позволит реализовать в полной мере общедидактические принципы наглядности, доступности, более эффективно использовать учебное оборудование, необходимое для изучения различных разделов школьного курса биологии с целью решения задач, ставшим перед общим биологическим образованием. Материально-техническое и информационно-техническое оборудование классифицируется ПО разделам курса, видам пособий, частоте использования.

Учебное оборудование по биологии должно включать: средства на печатной основе (демонстрационные печатные таблицы, дидактический материал); муляжи и модели(объемные, рельефные, модели—аппликации); экранно-звуковые средства обучения(кино- и видео фильмы, транспаранты, таблицы-фолии), в том числе пособия на новых информационных носителях (компьютерные программы, электронные пособия); технические средства обучения — проекционную аппаратуру(мультимедийный проектор, компьютер); учебно-методическую литературу для учителя и учащихся (справочные материалы, контрольно-дидактические тесты).

В зависимости от целей, содержания учебного материала учебное оборудование должно обеспечивать деятельность учащихся как репродуктивного, так и поисково-исследовательского и исследовательского характера, способствовать более эффективному усвоению знаний, формированию исследовательских умений и развитию интереса к биологии.

Демонстрационные таблицы на печатной основе распространенное и доступное учебное оборудование. Оно не требует для использования сложных приспособлений, несет адаптивную для учащихся научную информацию.

Основная дидактическая функция учебных биологических моделей — демонстрация структуры, существенных свойств, связей и взаимоотношений биологических систем. Учебное моделирование — один из методов познания. В курсе биологии моделирование процессов и явлений позволяет постичь сущность, структуру, изучаемого, выделить главное.

Дидактическое назначение экранно-звуковых средств по биологии — формирование специальных биологических понятий. С помощью экранных средств можно показать современные методы научного исследования, достижения науки, демонстрировать биологические процессы и явления, которые нельзя наблюдать непосредственно.

Использование видеофрагментов, анимаций, динамических моделей позволяет сделать учебный процесс более разнообразным, добиться лучшего усвоения учебного материала, проявить интерес к биологии.

По различным темам курса биологии следует использовать транспаранты. По своим дидактическим функциям транспаранты (таблицытаблицам печатной фолии) аналогичны на эпизодического основе пользования.

Важными средствами обучения биологии в последнее время становятся разнообразные электронные пособия, компьютерные обучающие и контролирующие программы.

Мультимедийная проекция — новая, развивающаяся технология. Это собирательное название всех типов проекторов, работающих от цифрового сигнала.

В обучения большое дистанционного рамках место должно отводиться электронным пособиям, которые позволяют обеспечить обучения программированное управление процессом биологии, конкретизировать учебный материал, систематизировать и закрепить знания учащихся. Электронные пособия дают возможность обеспечить самостоятельность учащихся в изучении нового материала, в работе с текстом, овладеть системой общебиологических понятий.

Современные средства обучения должны использоваться для самостоятельного поиска биологической информации в различных источниках.

Каждое средство обучения обладает определенными возможностями и дополняет другие средства, не заменяя их полностью. Поэтому целесообразно комплексное использование средств обучения, сочетание которых усиливает всестороннее воздействие на учащихся, способствует созданию проблемной ситуации и исследовательскому поиску ее решения, развитию умственной деятельности учащихся, самостоятельности, выработке необходимых умений и навыков.

Планируемые результаты изучения учебного предмета Личностные результаты обучения

- воспитание в учащихся чувства гордости за российскую биологическую науку;
- реализации этических установок по отношению к биологическим открытиям, исследованиям и их результатам;
- признания высокой ценности жизни во всех ее проявлениях, здоровья своего и других людей, реализации установок здорового образа жизни;
- формирование познавательных мотивов, направленных на получение нового знания в области биологии в связи с будущей профессиональной деятельностью или бытовыми проблемами, связанными с сохранением собственного здоровья и экологической безопасности.

Метапредметные результаты обучения

- находить информацию о организмах в научно-популярной литературе, биологических словарях и справочниках, анализировать и оценивать её, переводить из одной формы в другую.
 - грамотно пользоваться биологической терминологией и символикой;
- вести диалог для выявления разных точек зрения, выслушивать мнение оппонента, участвовать в дискуссии, открыто выражать и отстаивать свою точку зрения;

Предметные результаты обучения

Учащиеся должны знать

- основные открытия в области цитологии, генетики, биохимии, молекулярной биологии, биотехнологии:
- строение макромолекул белка, имеющих характер информационных биополимеров:
- виды РНК транспортной, информационной, строение этих молекул и функции в клетке.
- особенности строения молекул нуклеиновых кислот как биополимеров.
 - особенности синтеза белков.
 - основные термины и законы генетики.

Учащиеся должны уметь:

- выявлять, раскрывать, использовать связи строения и функции веществ в клетке.
- сформировать умение схематично изображать процесс удвоения ДНК.
 - описывать этапы биосинтеза белка.
- решать задачи по молекулярной биологии, генетике разного уровня сложности.

использовать приобретенные знания и умения в практической деятельности.

Содержание курса

«Решение сложных задач по генетике»

Введение (2ч)

История развития генетики. Методы генетических исследований (лекция - 1 ч., практическое занятие – 1 ч.)

Раздел 1. Решение задач по генетике (6 часов).

- 1. Молекулярная генетика (лекция 1 ч., практическое занятие 1 ч.)
- 2. Виды изменчивости. Медицинская генетика (лекция 1 ч., практическое занятие 1 ч.)
- 3. Прикладные разделы генетики: селекция и генная инженерия (лекция 1 ч., практическое занятие 1 ч.)

Раздел 2. Закон Харди-Вайнберга (Зчаса).

Решение задач на определение генетической структуры равновесной и неравновесной популяции (лекция - 1 ч., практическое занятие – 2 ч.)

Раздел 3. Решение задач на синтез белка (8 часов).

- 1. Определение смысловой и транскрибируемой цепи ДНК, определение рамки считывания (лекция 1 ч., практическое занятие 1 ч.).
- 2. Мутации и сдвиги в рамке считывания (лекция 1 ч., практическое занятие 1 ч.)
- 3. Определение аминокислотной последовательности по антикодонам тРНК (лекция 1 ч., практическое занятие 1 ч.).
- 4. Определение вторичной структуры тРНК, тмРНК (лекция 1 ч., практическое занятие -1 ч.).

Раздел 4. Типы наследования (12 часов).

Решение задач линии 28 ЕГЭ:

- 1. Кумулятивная полимерия (лекция 1 ч.), практическое занятие -1 ч.).
- 2. Сцепление генов в аутосоме, составление генетических карт (лекция 1 ч., практическое занятие -1 ч.).
- 3. Сцепление генов в половых хромосомах (включая голандрическое и псевдоаутосомное наследование) (лекция 1 ч., практическое занятие 1 ч.).
- 4. Летальный эффект у потомков (лекция 1 ч., практическое занятие -1 ч.).
- 5. Независимое наследование аутосомных и X-/Y-сцепленных признаков (лекция 1 ч., практическое занятие 1 ч.).
- 6. Составление родословных (лекция 1 ч., практическое занятие 1 ч.).

Раздел 5. Взаимодействие генов (3 часа).

- 1. Комплементарность.
- 2. Эпистаз.
- 3. Полимерия.